Mechanical Compression to Characterize the Robustness of Liquid Marbles.

نویسندگان

  • Zhou Liu
  • Xiangyu Fu
  • Bernard P Binks
  • Ho Cheung Shum
چکیده

In this work, we have devised a new approach to measure the critical pressure that a liquid marble can withstand. A liquid marble is gradually squeezed under a mechanical compression applied by two parallel plates. It ruptures at a sufficiently large applied pressure. Combining the force measurement and the high-speed imaging, we can determine the critical pressure that ruptures the liquid marble. This critical pressure, which reflects the mechanical robustness of liquid marbles, depends on the type and size of the stabilizing particles as well as the chemical nature of the liquid droplet. By investigating the surface of the liquid marble, we attribute its rupture under the critical pressure to the low surface coverage of particles when highly stretched. Moreover, the applied pressure can be reflected by the inner Laplace pressure of the liquid marble considering the squeezing test is a quasi-static process. By analyzing the Laplace pressure upon rupture of the liquid marble, we predict the dependence of the critical pressure on the size of the liquid marble, which agrees well with experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid Marble Interaction Gate for Collision-Based Computing

Liquid marbles are microlitre droplets of liquid, encapsulated by self-organised hydrophobic particles at the liquid/air interface. They offer an efficient approach for manipulating liquid droplets and compartmentalising reactions in droplets. Digital fluidic devices employing liquid marbles might benefit from having embedded computing circuits without electronics and moving mechanical parts (a...

متن کامل

A quantitative framework for the formation of liquid marbles and hollow granules from hydrophobic powders

Liquid marbles are micro reservoirs of fluid surrounded by a powder shell. Their unique properties show promise for high-value technological applications in the medical, biotechnology, chemical and pharmaceutical industries. In this study, liquid marbles were prepared from six mixtures of water and glycerol by releasing droplets from different heights onto a loosely packed powder bed using a 1m...

متن کامل

Liquid Marbles Based on Magnetic Upconversion Nanoparticles as Magnetically and Optically Responsive Miniature Reactors for Photocatalysis and Photodynamic Therapy.

Magnetic liquid marbles have recently attracted extensive attention for various potential applications. However, conventional liquid marbles based on iron oxide nanoparticles are opaque and inadequate for photo-related applications. Herein, we report the first development of liquid marbles coated with magnetic lanthanide-doped upconversion nanoparticles (UCNPs) that can convert near-infrared li...

متن کامل

Improving of Microstructure and Mechanical Properties of Al-A356 Alloy with Compo-Casting Method

Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this research, the effect of mechanical stirring of slurry in liquid-solid phase temperature and injection of alumina powder with inert gas (Ar) on microstructure and mechanical properties of Al-A356 alloy is investigated. In order to improve of the wettability a...

متن کامل

Buckling Study of Thin Tank Filled with Heterogeneous Liquid

Buckling of imperfect thin shell tank which is subjected to uniform axial compression is analyzed. The effect of internal pressure on the stability of a shell tank filled with a homogeneous-heterogeneous liquid was considered. Investigation of the liquid nature effect on reduction of the shell buckling load is performed by using the finite elements method. Calculating results in terms of analyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 31 41  شماره 

صفحات  -

تاریخ انتشار 2015